Lately, Wikipedia has been recognized as a promising lexical semantic resource. If Wikipedia is to be used for large-scale NLP tasks, efficient programmatic access to the knowledge therein is required.

JWPL (Java Wikipedia Library) is a open-source, Java-based application programming interface that allows to access all information contained in Wikipedia. The high-performance Wikipedia API provides structured access to information nuggets like redirects, categories, articles and link structure. It is described in our LREC 2008 paper

JWPL contains a Mediawiki Markup parser that can be used to further analyze the contents of a Wikipedia page. The parser can also be used stand-alone with other texts using MediaWiki markup.

Further, JWPL contains the tool JWPLDataMachine that can be used to create JWPL dumps from the publicly available dumps at download.wikimedia.org

In addition to that, JWPL now contains the Wikipedia Revision Toolkit, which consists of two tools, the TimeMachine and the RevisionMachine. The TimeMachine can be used to reconstruct a snapshot of Wikipedia from a specific date, or to create multiple snapshots from a time span. The RevisionMachine offers efficient access to the edit history of Wikipedia articles while storing the revisions in a dedicated storage format which decreases the demand of storage space by 98%. The toolkit is described in our ACL system demonstration paper.


Downloads and further instructions how to add JWPL or the Wikipedia Revision Toolkit as Maven dependencies to your project can be found on the GitHub Project Site

The source code is provided under the LGPL v3.


Approaches to Automatic Text Structuring

Author Nicolai Erbs
Date September 2015
Kind Phdthesis
Research Areas Ubiquitous Knowledge Processing, UKP_s_JWPL, UKP_s_DKPro_Similarity, UKP_s_DKPro_Core, UKP_p_WIKULU, UKP_p_WIWEB, UKP_p_openwindow, UKP_p_DKPro, UKP_a_NLP4Wikis, UKP_a_ENLP
Abstract Structured text helps readers to better understand the content of documents. In classic newspaper texts or books, some structure already exists. In the Web 2.0, the amount of textual data, especially user-generated data, has increased dramatically. As a result, there exists a large amount of textual data which lacks structure, thus making it more difficult to understand. In this thesis, we will explore techniques for automatic text structuring to help readers to fulfill their information needs. Useful techniques for automatic text structuring are keyphrase identification, table-of-contents generation, and link identification. We improve state of the art results for approaches to text structuring on several benchmark datasets. In addition, we present new representative datasets for users’ everyday tasks. We evaluate the quality of text structuring approaches with regard to these scenarios and discover that the quality of approaches highly depends on the dataset on which they are applied. In the first chapter of this thesis, we establish the theoretical foundations regarding text structuring. We describe our findings from a user survey regarding web usage from which we derive three typical scenarios of Internet users. We then proceed to the three main contributions of this thesis. We evaluate approaches to keyphrase identification both by extracting and assigning keyphrases for English and German datasets. We find that unsupervised keyphrase extraction yields stable results, but for datasets with predefined keyphrases, additional filtering of keyphrases and assignment approaches yields even higher results. We present a de- compounding extension, which further improves results for datasets with shorter texts. We construct hierarchical table-of-contents of documents for three English datasets and discover that the results for hierarchy identification are sufficient for an automatic system, but for segment title generation, user interaction based on suggestions is required. We investigate approaches to link identification, including the subtasks of identifying the mention (anchor) of the link and linking the mention to an entity (target). Approaches that make use of the Wikipedia link structure perform best, as long as there is sufficient training data available. For identifying links to sense inventories other than Wikipedia, approaches that do not make use of the link structure outperform the approaches using existing links. We further analyze the effect of senses on computing similarities. In contrast to entity linking, where most entities can be discriminated by their name, we consider cases where multiple entities with the same name exist. We discover that similarity de- pends on the selected sense inventory. To foster future evaluation of natural language processing components for text structuring, we present two prototypes of text structuring systems, which integrate techniques for automatic text structuring in a wiki setting and in an e-learning setting with eBooks.
Website http://tuprints.ulb.tu-darmstadt.de/4959/
Full paper (pdf)
[Export this entry to BibTeX]

Important Copyright Notice:

The documents contained in these directories are included by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.


A A A | Drucken Print | Impressum Impressum | Sitemap Sitemap | Suche Search | Kontakt Contact | Webseitenanalyse: Mehr Informationen
zum Seitenanfangzum Seitenanfang